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In this paper, the performance of a diagrammatic method based on geometric and algebraic 
considerations is illustrated. This method, based on the particular symmetry of a thermody- 
namic diagram, allows to obtain the most important thermodynamic expressions of a simple 
system. In fact, these thermodynamic expressions can be developed with the application of var- 
ious geometric patterns to the proposed diagram. The particular symmetry of the thermody- 
namic diagram allows to develop a matrix formulation of the different geometric patterns. This 
matrix formalism requires that the thermodynamic parameters of the diagram be recast in a 
vectorial form. 

1. I n t r o d u c t i o n  

Recently,  some studies of  the application of  pat tern recognition to the problem 
of  searching correlations among thermodynamic  parameters  have been reported 
[1-3]. Pat tern recognition is a subfield of  artificial intelligence and a large fraction 
of  the effort  in this area must  be devoted to the recognition of  appropriate geo- 
metr ic  pat terns f rom given relationships. 

The purpose of  this paper is to illustrate a geometric formalism that  allows to 
derive the the rmodynamic  interrelationships of  a simple system, which can also be 
encoded by the aid of  a matr ix formalism that is strictly related to the part icular  
geometry  of  the thermodynamic  diagram in table 1. 

F r o m  the thermodynamic  diagram 1 in tabe 1 (for details about  this d iagram 
we refer to [2] and references therein) a series of  geometric patterns, N, P, M, F and 
b can be derived and used to obtain the most  important  thermodynamic  expressions 
of  simple systems. In fact, the various thermodynamic  expressions result f rom the 
application of  a series of  operations of  the geometric patterns in table 1, when they 
overlap diagram 1. The geometric form of  the patterns are easy to remember  as 
they trace the shape of  a letter. This trace indicates the relation among the thermo-  
dynamic  parameters  and the sign of  the variable is determined by the direction of  
the ar row of  diagram 1. 
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Table 1 
The diagram for thermodynamic relationships (diagram 1), the vector diagram for thermodynamic re- 
lationships (diagram 2), and the geometric patterns N, P, M, F and b. 
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2. General  formal ism 

In diagram 1 the thermodynamic parameters A, G, H, U, P, S, T and V represent 
Helmholtz free energy, Gibbs free energy, enthalpy, internal energy, pressure, 
entropy, temperature and volume [4]. The geometric formalism starts with the fol- 
lowing series of  rules, which after some practice are very easy to remember: 
(a) Letters used to abbreviate thermodynamic parameters are placed at the corners 

(energy terms) and sides (non-energy terms) of  the diagram (see diagram 1). 
(b) To obtain an energy term from the variables in the diamond pattern, multiplica- 

tion must occur between two variables along the same arrow. 
(c) To generate the thermodynamic relationships, terms are used in alphabetical 

order and in unprimed, primed and twice primed order. 
(d) When going from one term on an arrow to the other term on the same arrow, 

the sign is positive when the direction of  tracing the letter approaches the ar- 
rowhead and negative when the same direction approaches the arrowtail. 

The given geometric method is mainly based on the particular symmetry of  the 
thermodynamic diagram, which can be used to derive a matrix formalism to obtain 
the different thermodynamic interrelationships if the parameters of  the diagram 
are written in a vectorial form [3] as represented in diagram 2 of table 1. Here, 
parameters A, G, H, U, P, S, T and V are represented as two component (x, y) row 
matrices: (1, 1), ( 1 , - 1 ) ,  ( - 1 , - 1 ) ,  ( - 1 , 0 ) ,  ( 0 , -1 ) ,  ( - 1 , 0 ) ,  (1 ,0)and (0, 1). 

These thermodynamic vectors possess an interesting mathematical property: 
adjacent potentials (corner vectors) or adjacent variables (diamond vectors) in dia- 
gram 2 are orthogonal to each other, that is, multiplying a thermodynamic vector 
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by the Hermitian adjoint (here, transpose T) of another adjacent thermodynamic 
vector, the result is always zero, e.g.: ( -1 ,  1~. (1, 1) T =  0 or ( - 1 , 0 ) .  (0, 1) T = 0 
but, ( -  1, 1) • (1, - 1)T # 0 or (-- 1,0). (1 ,0)"  # 0. Thus, the only combinations 
between thermodynamic parameters of the diamond (P, S, T and V) allowed by 
this rule are the following energy-dimensioned combinations: S and T or P and V. 

In order to obtain, by matrix formalism, the thermodynamic expressions we 
are interested in, the following matrices must be used: 

10) 1 ' ( 1 )  

(0 
C4 = - 1  ' (2) 

(10 01) 
(_1 

cry = 0 " (4) 

These matrices perform a 90 ° or a -90  ° rotation about the axis of diagram 2 of table 
1 and a x- or y-reflection parallel to the x or y axis. 

The following four nilpotent matrices are also needed to transform potentials 
lying over or under the x or y axis into a variable function lying on the axis: 

(_10 0) 
L_x = 0 ' (6) 

(010) 
Ly--  0 ' (7) 

L_y = ( ~  -1  0) (8) 
Before starting the different matrix operations, some consideration of the sign 

convention is necessary. A negative sign for a term in a thermodynamic expression 
is contributed only by vectors ( -1 ,0 )  and (0 , -1)  when (sl) these vectors are not 
differentiated, excluding the constant parameter, (s2) they are the 2nd factor in a 
nondifferentiable energy-dimensioned term and (s3) they are a constant parameter 
in a wholly differentiable expression; otherwise the sign is always positive. 
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2.1. GEOMETRIC RELATIONS BETWEEN NEIGHBORING POTENTIALS 

2.1.1. The Npat tern 
The relationships in this pattern when overlaid on diagram 1 (see table 1 and 

fig. 1) have the following form: 

A = B - CC I . 

As from C to C ~ we are moving towards the arrowtail, a minus sign is required 
before the third term of this equation. 

By superimposing the dashed lines of the N pattern to diagram 1 and by substi- 
tuting the alphabetical terms with the corresponding thermodynamic terms we 
obtain the following equation: 

A = G -  VP.  (9) 

With successive 90 ° rotations of the superimposed N pattern and by substituting 
(90 ° substitution), we obtain 

G = H -  TS ,  (10) 

H = U + P V ,  (11) 

U = A + S T .  (12) 

Rotat ing the N pattern around its CC ~ axis by 180 ° (a 180 ° substitution, followed 
by a 90 ° substitution) we obtain the other four equivalent expressions, e.g., 

U - - H - P V .  (13) 

2.1.2. Matr ix  formalism for  the neighboring potentials 
Generating step: the matrix form of the well-known H = U + P V  relation, 

shown in eq. (14), 

( - 1 , - 1 )  = ( -1 ,  1 ) +  (0,-1)(0,  1), (14) 

can be obtained by operating on potential H - ( -1 ,  - 1 )  with the matrix succes- 
sion, ax, Ly, L_y, a s  shown in the following equation: 

( - 1 , - 1 ) - -  (-1,-1)Crx + ( - 1 , - 1 ) L y .  ( - 1 , - 1 ) L _ y .  (15) 

i i ~ l  

Fig. 1. Example of a superimposed pattern: the N pattern. 
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Operating on potential (1 , -1)  - G with matrix succession try, Lx, L - x ,  as shown 
in eq. (16), we obtain eq. (17), i.e., G = H - TS: 

(1 , -1 )  = (1 , -1)ay + (1 , -1 )Lx- (1 , -1 )L_x ,  (16) 

(1,--1) = (--1,--1) -- (1,0)(--1,0), (17) 

while with the former matrix succession we can obtain G = A + P V .  

The generating step converts the starting vector into a neighboring vector and, 
then, adds to it the product of the projections of these two vectors on the corre- 
sponding x or y axis; the tr operation could be substituted by a C4. As further multi- 
plication between two row vectors is not possible, matrix operations stop at this 
level. The operations trx,y, Ly,x, L - y , - x  (the generator) could be used to generate the 
remaining thermodynamic relations, which can also be generated by the aid of the 
following propagating step. 

The propagating step, formally easier than the generating step, operates on the 
terms of a well-known starting relation with rotation or reflection matrices only. 
Repeating this process with the terms of the newly obtained relation we can gener- 
ate every thermodynamic expression. Operating, for example, on eq. (14), with 

(14)C~-: ( - 1 , - 1 ) C + = ( - 1 , 1 ) C ~ + ( O , - 1 ) C + . ( O , - 1 ) C  +,  (18) 

we obtain (after operations have been performed) eq. (19), that is, U = A + S T :  

( -1 ,  1) = (1, 1) + ( -1 ,0) (1 ,0) .  (19) 

While operating with try we can obtain G = A + P V: 

(14)try : (1 , -1)  = (1, 1) + (0,-1)(0,  1). (20) 

Now, operating on eq. (19) with C + we obtain eq. (21) (A = G - VP): 

(19)C+ : (1, 1) -- (1 , -1)  - (0, 1) (0 , -1) .  (21) 

Thus, every expression, that holds between thermodynamic potentials, can be 
obtained. The negative signs in eqs. (17) and (21) are supported by the (s2) sign con- 
vention. 

2.2. GEOMETRY OF THE DIFFERENTIAL FORMS OF THE POTENTIALS 

2. 2.1. The P p a t t e r n  
The relationship for this geometric pattern when overlaid on diagram 1 (see 

table 1) is given by an equation of the following form: 

dA = -dB(B')  - dC(C').  

See the preceding paragraph for the sign convention. With a substitution and rear- 
ranging (that is, dB(B') = B'dB) we obtain the following equation: 
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dA = - S d T -  P d V .  

With successive 90 ° substitutions we obtain the following equations: 

dG = VdP - S d T ,  

d H  = TdS + VdP, 

dU = - P d V  + TdS.  

(22) 

(23) 

(24) 

(25) 

2. 2.2. Matrix  formalism for  the differential forms o f  the potentials 
Propagating step: starting with the matrix expression of the well-known differen- 

tial form of potential U, dU = TdS - PdV,  shown in eq. (26): 

d ( -1 ,  1) = (1,0)d(-1,0)  - (0, -1)d(0, 1), (26) 

and operating on the terms of this equation with C~ or cry we obtain eq. (27) or 
(28) (dA = - P d V  - S d T  or dA = - S d T  - PdV) and operating on eq. (27) with 
C + we obtain eq. (29) (dG = - S d T  + VdP) and so on. 

(26)C+ : d ( 1 , 1 ) = - ( O , - 1 ) d ( O ,  1 ) - ( - 1 , 0 ) d ( 1 , 0 ) ,  (27) 

(26)~ry : d(1, 1 ) =  - ( - 1 ,  0)d(1, 0) - (0,-1)d(0,  1), (28) 

(27)C+ : d ( 1 , - 1 ) = - ( - 1 , O ) d ( 1 , O ) + ( O ,  1)d(O,-1).  (29) 

Equation (26) can also be derived by the aid of the following generating step per- 
formed on vector ( -  1,1) = U: 

d ( -1 ,  1) = ( -1 ,  1)L_xd(-1,  1)Lx + (-1,  1)L_yd(-1,  1)Ly. (30) 

Applying generators L-x,  Lx, L_y, Ly to vector (1 , -1)  _-- G (eq. (31)) we obtain 
eq. (32) (dG = - S d T  + VdP): 

d(1 , -1 )  = (1 , -1)L_xd(1,-1)Lx + (1 , -1)L_yd(1 , -1)Ly,  (31) 

d (1 , -1 )  = - ( -1 ,0 )d (1 ,0 )  + (0, 1)d(0 , -1) .  (32) 

In the same manner we can generate all the other relations. 
Negative signs in the right hand side ofeqs. (27), (28), (29) and (32) are supported 

by the (s 1) sign convention. 

2.3. GEOMETRY OF THE MAXWELL RELATIONS 

2.3.1. The Mpattern 
The relationships of this pattern when overlaid on diagram 1 are given by an 

equation of the following form: 
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-(6A/6A')A,, = (rB/rBt)B,. 

The sign arises from the fact, that tracing from A to A n we approach an arrowtail 
while from B to B n the tracing approaches an arrowhead. With a substitution we 
obtain 

- ( 6 r l r V ) s  = ( r e l r S ) v .  

With successive 90 ° substitutions we obtain eqs. (34)-(37): 

- ( r P / r T ) v  = ( r s / r V ) T  , 

( rS  / 6P)T = - (  r V / rT)  p , 

- ( r v / r S ) p  = - ( r T / r P ) s  . 

(33) 

(34) 

(35) 

(36) 

2.3.2. Matr ix  formalism for the Maxwell  relations 
The generator for the Maxwell relation is the matrix succession: C~-, try, C~-, try, 

C a which applied to vector ( 1 , 0 ) -  T (eq. (37)) generates eq. (38), i.e., 
- (61" / rv ) s  = ( r e / r s ) v ,  

(6(1, 0)/6(1, 0)C4)(1,o)~ ~ = (6(1,O)C+/6(1,O)try)O,o)c;, (37) 

(38) -(6(1,0)/6(0, 1))(_1,0) = (6(0,-1)/6(-1,0))(0,1), 

while by the aid of the propagating step we obtain, e.g., the following interrela- 
tions: 

(39) (38)C~- : (6(0,-1)/6(1,0))(o,1) = (6(1,0)/6(0,1))(1,o), 

(39)trx : (6(--1,0)/6(0,--1))(1,0) = --(6(0,1)/6(1,0))(0,_1), (40) 

i.e., ( rP / rT )  v = (6S/6 V) r and ( rS /rP)  r = - (6 V / rT )p ,  respectively. The nega- 
tive sign is given, here, by the (s3) sign convention. 

2.4. GEOMETRIC RELATIONS FOR THE COEFFICIENTS 

2.4.1. The Fpattern 
The form of the relationships of this pattern when overlaid to diagram 1 is given 

by 

(6A/6A')A,, = - B .  

As tracing from A' to B we approach the arrowtail, one of the two terms (A' or 
B) should be negative. With a substitution we obtain the following equation: 

( r A / r T ) v  = - S ,  (41) 
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while with successive 90 ° substitutions we obtain the following equations: 

(rG/rP)T = V (F upside down), (42) 

(rH/t fS)v  = T ,  (43) 

(6U/6V)s  = - P .  (44) 

With a 180 ° substitution around the A" axis, followed by a 90 ° substitution we 
obtain the other four interrelationships, such as 

(6A /6V)r  = - P  (F rightside up). (45) 

2.4.2. Matr ix  formalism for the coefficients 
From eq. (26), after differentiation, we can derive eq. (46), that is, 

(SU/SV)s  = - P ,  

(~i(-1, 1)/6(0, 1))(_l,0) = - ( 0 , - 1 ) ,  (46) 

and with the aid of the propagating step we can obtain, e.g. relations (47) and 
(48), that is, ( ~A / r T) v = - S  and ( rG / r T) ? = - S :  

(46)C~- : (6(1,1)/6(1, 0))(0:) = - ( - 1 ,  0) , (47) 

(47)C~x : (6(1,-1)/6(1,0))(0._1) = - ( - 1 , 0 ) .  (48) 

The negative signs on the right side of these equations are supported by the (sl) 
sign convention. 

Ignoring every vector of eq. (46) except (-1,  1) - U, we could have applied to 
the ( -  1, 1) vector in the denominator, constant parameter and coefficient the gen- 
erating sequence Ly, Lx and L_y, respectively and derived, in this manner, eq. (46). 

It is noteworthy that the given sign convention, which could be based on x and 
y directions of diagram 1, has the advantage of avoiding continuous reference to 
any form of diagrams. 

The power of this pattern recognition system can be underlined by the fact that 
it permits problem solving by geometric convention. For example, exercise 5.4 on 
page 119 of Atkins [4] asks to determine the equation for the temperature depen- 
dence of A (Helmholtz free energy) that corresponds to the well-known form of the 
Gibbs-Helmholtz equation 

(6(G/T)/6(I/T)) e = U. 

This exercise can be geometrically solved once the pattern relating the param- 
eters of this equation has been recognized in diagram 1 of table 1. A closer examina- 
tion of this diagram shows that superposing on it the last pattern of table 1 (a kind 
of b), every thermodynamic variable involved in the Gibbs-Helmholtz relation 
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will be encompassed in a specific order given by the alphabetical letters A, N ,  A" 
and B while the algebraic relationship for this geometry is: 

~(m/m')/~(1/A')A,, = B. 

Thus, to find out the temperature dependence of potential A we just have to overlay 
the dashed lines of pattern b to diagram 1, to rotate it by 180 ° around the S T  axis 
and substitute the alphabetical terms with the corresponding thermodynamic 
terms, in the same order, obtaining the right answer, 

(~5(A/T) /~5(I lT) )  v = U .  

3. Conclusion 

This diagrammatic method for thermodynamic relationships based on geometric 
and matrix operations not only represents a stimulating alternative view on a mat- 
ter that usually leaves no space for imagination but also, being based on a minimal 
set of information is not too unwieldy, computationally and conceptually. The 
space covered by the thermodynamic diagram can be considered as a thermody- 
namic topological space in which neighborhood relations are important properties. 
In fact the geometry of these neighborhood relations determines the entire formal- 
ism which is unambiguous and straightforward. It should be noticed that while 
the propagating step of the matrix formalism is self-explanatory, the construction 
of the less obvious generating step can be generated with the help of diagram 1 and 
the rule that only allows S and T or P and V energy-dimensioned combinations of 
the diamond parameters (orthogonality n~e). 

This paper can be seen as a suggestion for the construction of a topological space 
that should allow to derive physical relationships of any order and complexity. 
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